
HEAT AND MASS TRANSFER IN POROUS AND DISPERSION MEDIA

THERMOMECHANICS OF A HEAT-RELEASING GRAINED LAYER

Yu. S. Teplitskii and V. I. Kovenskii UDC 532.5

From the point of view of the model of an infiltrative grained layer the influence of the heat release and
compressibility of the gas on the resistance of the layer has been investigated. In the isothermal case, with

account for the gas compressibility, the range of applicability of the known Ergan formula 




∆p
patm



E

 ≤ 1 has

been established. We have developed an engineering technique for calculating the resistance of the heat-re-
leasing grained layer taking into account the simultaneous influence of the pressure and temperature on the
gas density and viscosity.

Introduction. As is known, the influence of thermal processes on the hydrodynamics of a layer can be sig-
nificant, which under certain conditions leads to a radical change in the flow conditions [1–3]. From the practical point
of view, of great importance is the investigation of the influence of the heat release on the resistance of a granular
layer, largely determining the efficiency of a particular technical device.

To describe flows in grained layers, one usually uses the filtration theory based on the modified Darcy law,
which in the elementary case at ρf = constant reduces to the equations [1]

− 
dp
dx

 = Aµfu + Bρfu
2
 ,   

dv
dx

 = 0 .
(1)

Since ρf is a constant, the first equation of (1) is easily integrated and for the layer resistance we obtain

∆p
h

 = Aµfu + Bρfu
2
 .

(2)

The best known variant of dependence (2) is the Ergan formula [4]

∆p
h

 = 150 
(1 − ε)2

ε3  
µfu

d
2  + 1.75 

(1 − ε)

ε3  
ρfu

2

d
 ,

(3)

which yields for the coefficients A and B the values

A = 150 
(1 − ε)2

ε3  
1

d
2 ,   B = 1.75 

(1 − ε)

ε3  
1

d
 .

(4)

The Ergan formula describes experimental data on the resistance of grained layers composed of particles of compact
form (balls, cylinders, tablets, etc.) in regimes where the dependences ρf(p, Tf) and µf(Tf) can be neglected.
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In [1], an analysis of the thermomechanical processes in a heat-releasing grained layer in the isobaric approxi-
mation (the gas density depends only on Tf) without account for the heat conductivity of phases was performed. For
the calculation of the layer resistance, the expression

ρf0

Jf
2  ∆p = Q

l

 + 
2

5
 α
__

1 



(1 + Q

l

)5
 ⁄ 2 − 1




 + α
__

2 (1 + Q
l  ⁄ 2) (5)

was obtained. It permits estimating the influence of the heat release on the ∆p value under the above assumptions.
The aim of the present work was to perform an analysis of the phenomenon in the general case, without any

severe limitations on the physical and regime parameters of the grained layer.
Formulation of the Problem. To describe the stationary longitudinal heat transfer and the pressure distribu-

tion inside the heat-releasing layer (Fig. 1), we use the system of equations [1]

ερfvTf 
dS

dx
 = 

d

dx
 



ελf 

dTf

dx



 + 

6 (1 − ε) α
d

 (Ts − Tf) + Fxu , (6)

0 = 
d

dx
 



(1 − ε) λs 

dTs
dx




 + 

6 (1 − ε) α
d

 (Tf − Ts) + Q (1 − ε) , (7)

ρfv 
dv
dx

 = − 
dp
dx

 − Fx ,
(8)

p = ρfRTf , (9)

where Fx, a differential analog of (3), is used. Let us make use of the known thermodynamic relation [5]

dS = 
cp

Tf
 dTf − 





∂Vf

∂Tf



p

 dp . (10)

In view of (8), (9) and the relation Vf = 1 ⁄ ρf, Eq. (6) will take the form

Fig. 1. Character of the phase temperature and pressure distribution inside the
heat-releasing grained layer in the accepted coordinate system.

660



ρfcpu 
dTf

dx
 = 

d

dx
 



ελf 

dTf

dx




 + 

6 (1 − ε) α
d

 (Ts − Tf) − ρfεv
2
 
dv

dx
 . (11)

It should be noted that the last term in (11) describes the action of the heat outflow, whose power increases with in-

creasing x (
dv
dx

 > 0, since the gas expands in the filtration process). At higher speeds of filtration the influence of this

outflow can lead to a deformation of the temperature fields in the layer.
Equations (7)–(9) and (11) are considered at the following boundary conditions (with allowance for the gas

preheating [6]):

x = 0: cpJf (Tf − T0) = ελf 
dTf

dx
 + (1 − ε) λs 

dTs

dx
 , (12)

(1 − ε) λs 
dTs

dx
 = α0 (Ts − T0′) ; (13)

x = h: p = patm ,   
dTf

dx
 = 

dTs

dx
 = 0 . (14)

With the use of the trivial relation

(1 − ε) λs 
dTs

dx



x=0

 = cpJf (T0
′ − T0) (15)

condition (13) will acquire the form

x = 0: (1 − ε) λs 
dTs

dx
 = 

α0

1 + 
α0
cpJf

 (Ts − T0) .
(16)

Determination of the Model Parameters. In analyzing system (7)–(9), (11)–(14), the correct choice of the
coefficients α, α0, λf, λs is essential.

Heat-transfer coefficients. The interphase heat-transfer coefficient is calculated by the formulas [7]

Nu = 
αd

λf
0  = 













0.4 


Re
ε




2 ⁄ 3
 Pr

1 ⁄ 3 ,

1.6⋅10
−2

 


Re
ε




1 . 3

 Pr
1 ⁄ 3 ,

     

Re
ε

 > 200 ;

Re
ε

 ≤ 200 .

(17)

The heat-transfer coefficient α0 defining the preheating intensity is found from the dependence [8]

St0 = 
α0

cpJf
 = 0.5Re0

−0.5
Pr

−0.6
 .

(18)

Heat-transfer coefficients of phases. In the literature, there are no uniform recommendations for calculating the
parallel thermal conductivity of phases λf and λs. To analyze them, let us use the trivial relation

λx
c−c

 = ελf + (1 − ε) λs
c−c

 , (19)
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relating the heat conductivity coefficients of phases to the effective thermal conductivity of the layer λx
c−c. For the cal-

culation of the latter, many empirical dependences exist. Note the most reliable dependence [4]

λx
c−c

 = λ
~

 + 0.5cpρfud , (20)

where λ
~

 can be determined by the formula [9]

λ
~

λf
0 = 1 + 

(1 − ε) 



1 − 

λf
0

λ
~

s





λf
0

λ
~

s

 + 0.28ε0.63(λf

0 ⁄ λ
~

s)
−0.18

 .
(21)

As is seen, for the calculation of λf and λs
c−c there is only one equation (19) with λx

c−c determined by (20) and (21).
Therefore, additional model notions on the mechanism of heat transfer in a two-phase system are needed.

In [4], the analogy between the convective heat and mass transfer was used. For the basis, the known depend-
ence for the parallel diffusion coefficient of the gas impurity

Dx = 0.3Df
0
 + 0.5ud (22)

was used. In accordance with (2.2), for λf

λf = 0.5cpρf 
u
ε

 d
(23)

was assumed. Then from (19) and (20) follows the formula for λs
c−c

λs
c−c

 = 
λ
~

1 − ε
 .

(24)

In [10], the no-flow zones near the contact point between particles were assigned to the phase of the frame
of particles, and for λf and λs

c−c the equations

λf = λf
0
 + 0.03cpρfud , (25)

λs
c−c

 = 12λf
0
 + 0.85cpρfud (26)

were obtained. In view of (25) and (26) at ε = 0.4 Eq. (19) takes the form

λx
c−c

 = 7.6λf
0
 + 0.52cpρfud . (27)

As the calculations show, for λx
c−c (27) gives values fairly close to those determined by (20).

Analyzing the systems of coefficients (23)–(26), we observe the following:
1) both systems for the homogeneous model give approximately equal values of the parallel heat conductivity
λx

c−c;
2) system (23), (24) does not take into account the molecular heat conductivity of the gas in the expressions
for λf;
3) system (25), (26) does not comply with the requirements of analogy of the processes of convective heat
and mass transfer and contains no thermal characteristics of particles.

662



Therefore, we took, as the basis, system (23), (24) with the addition of the molecular heat conductivity coef-
ficient in λf and the corresponding correction in λs

c−c:

λf = λf
0
 + 0.5cpρf 

u
ε

 d ,
(28)

λs
c−c

 = 
λ
~

 − ελf
0

1 − ε
 .

(29)

The gross heat conductivity coefficient of the framework of particles is calculated by the formula

λs = λs
c−c

 + λr ,
(30)

where the radiation component is [11, 12]

λr = 
0.3024

κ + σ
 




Ts

100




3

 .
(31)

Reduction to Dimensionless Form. Let us write system (7)–(9), (11)–(14) in the dimensionless form:

dθf

dξ
 = 

d

dξ
 




1

Pef

 
dθf

dξ




 + 

1

Pe
 (θs − θf) − 

Jf
2

cpε
2ρf

2
 (θf + 1) T0

 




dθf

dξ
 − 

θf + 1

p′
 
dp′

dξ




 , (32)

0 = 
d

dξ
 




1

Pes

 
dθs

dξ




 + 

1

Pe
 (θf − θs) + Q

l

 , (33)

J
l

fρf′ 
d

dξ
 




1
ρf′  




 = − D 

dp′

dξ
 − 150 

(1 − ε)2

ε3  Re − 1.75 
1 − ε

ε3  Re
2
 ,

(34)

ρf′ = 
p′

θf + 1
 .

(35)

The boundary conditions are

ξ = 0: θf = 
1

Pef
 
dθf

dξ
 + 

1

Pes
 
dθs

dξ
 ; (36)

θs = 6 (1 − ε) 
Pe0h

Pesd
 
dθs

dξ
 (1 + St0) ;

(37)

ξ = 1: p′ = 1 ,   
dθf

dξ
 = 

dθs

dξ
 = 0 . (38)

For µf = µf0(θf + 1)0.75 [6] Eq. (34) in view of (35) can be given in a form more convenient for analysis
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p′ 
d

dξ
 




θf + 1

p′




 = − 

ε2
Resd

2

γRe0
2  p′ 

dp′

dξ
 − 

h

d
 



150 

(1 − ε)2

ε
 
(θf + 1)1.75

Re0

 + 1.75 
1 − ε

ε
 (θf + 1)




 . (39)

Consider special cases allowing integration of (39).
Resistance of the Grained Layer in the Isothermal Case. At θf = 0 (39) will have the form

p′ 
d

dξ
 




1

p′




 = − 

ε2
Resd

2

γRe0
2  p′ 

dp′

dξ
 − 

h

d
 



150 

(1 − ε)2

ε
 

1

Re0

 + 1.75 
1 − ε

ε




 . (40)

Let us integrate (40) from ξ to 1:

ln 



1 + 

p (ξ) − patm

patm




 = − 

ε2
Resd

2

2γRe0
2

 



1 − 




1 + 

p (ξ) − patm

patm





2


 − 

h

d
 



150 

(1 − ε)2

ε
 

1

Re0

 + 1.75 
1 − ε

ε




 (1 − ξ) .      (41)

For Resd
2  ⁄ Re0

2 >> 1 in (41) neglect of ln 



1 + 

p(ξ) − patm
patm




 is admissible. Then for the calculation of the layer resistance

we obtain a simple dependence

p (ξ) − patm

patm
 F √1 + 2 





∆p

patm



E

 (1 − ξ)  − 1 , (42)

where 




∆p

patm



E

 = 
γRe0

2

Resd
2ε2 

h

d
 



150 

(1 − ε)2

ε
 

1

Re0
 + 1.75 

1 − ε

ε




 is a dimensionless writing of the Ergan formula for ρf = ρf0:

∆p

h
 = 150 

(1 − ε)2

ε3
 
Jfµf0

d
2ρf0

 + 1.75 
1 − ε

ε3
 

Jf
2

dρf0

 . (43)

As is seen, even in the isothermal case, in the layer, generally speaking, a nonlinear pressure profile is formed. At

small values of 




∆p
patm



E

 (42) will describe the pressure profile in the layer

p (ξ) − patm

patm
 C 





∆p

patm



E

 (1 − ξ) . (44)

To calculate the total differential pressure in the layer, from (42) at ξ = 0 it follows that

∆p

patm

 F √1 + 2 
γRe0

2

Resd
2 ε2 

h

d
 






150 

(1 − ε)2

ε
 

1

Re0

 + 1.75 
1 − ε

ε








 − 1 (45)

or

∆p

patm

 F √1 + 2 
h

patm

 






150 

(1 − ε)2

ε3
 
µfu

d
2

 + 1.75 
1 − ε

ε3
 
ρfu

2

d








 − 1 .
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Figure 2 presents the results of the calculation of the differential pressure on the whole of the layer ∆p ⁄ patm

by (41) at ξ = 0 and (45), as well as by the Ergan formula (43) and by the same formula at ρf = ρf(p0). It is seen

that the exact solution of (41) practically coincides with the approximate solution of (45). Calculations by the Ergan
formula for various densities of the gas give curves markedly differing from one anther and from the solutions of (41)
and (45) (Fig. 2). As is seen, the calculation of the layer resistance by the Ergan formula, where the influence of pres-

sure on the gas density is neglected, can lead to great errors at 




∆p
patm



E

 > 0.1. This conclusion holds as well for other

analogous formulas obtained from the modified Darcy equation (e.g., the one used in (5)) in using them to calculate
the resistance of a gas-blown layer when the differential pressure on the layer becomes comparable to the output pres-
sure. The generalization of the results obtained is given in Fig. 3.

Resistance of the Grained Layer in the "Isobaric" Case. At p′ = 1 (this is justified to some extent for thin
layers) Eq. (39) assumes the form

dθf

dξ
 = − 

ε2
Resd

2

γRe0
2  

dp′

dξ
 − 

h

d
 






150 

(1 − ε)2

ε
 
(θf + 1)1.75

Re0

 + 1.75 
1 − ε

ε
 (θf + 1)







 . (46)

Following [1], we neglect the terms containing λf and λs in (6) and (7). Adding (32) and (33) for sufficiently
large Q

l

, we obtain

dθf

dξ
 C Q

l

 . (47)

Fig. 2. Differential pressure in the grained layer (isothermal case): a) h ⁄ d =
100; b) 1000; 1) calculation by the Ergan formula (43); 2) calculation by (41)
and 45); 3) calculation by the Ergan formula (43) with substitution of ρf0 by
ρf(p0). d = 10−4 m. Jf, kg ⁄ (m2⋅sec).

Fig. 3. Dimensionless differential pressure in the isothermal grained layer ver-
sus the complex (γRe0

2 ⁄ Resd
2ε2 (h ⁄ d): 1) calculation by the Ergan formula

(43); 2) calculation by (41) and (45); h ⁄ d = 100 — solid lines; h ⁄ d = 1000 —
dashed lines. d = 10−4 m.
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Fig. 4. Temperature and pressure profiles in the grained layer: a, b, c) h ⁄ d =
100; d, e, f) 1000; a, d) Jf = 5⋅10−4 kg ⁄ (m2⋅sec); b, e) 5⋅10−2; c, f) 5; 1) Ts;
2) Tf; 3) (p − patm) ⁄ patm. Q = 5⋅103 W ⁄ m3, d = 10−4 m.

Fig. 5. Temperature and pressure profiles in the grained layer: a, b, c) h ⁄ d =
100; d, e, f) 1000; a, d) Jf = 0.5 kg ⁄ (m2⋅sec); b, e) 50; 1) Ts;  2) Tf; 3)
(p − patm) ⁄ patm. Q = 5⋅107 W ⁄ m3, d = 10−4 m.
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The solution of (47) with the boundary condition θf(0) = 0 following from (36) has the form θf = Q
l

ξ. The integration
of (46) with respect to ξ from 0 to 1 in view of the solution of (47) yields an expression analogous to (5):

ρf
0

Jf
2

 ∆p = Q
l

 + 
h

d
 
1 − ε

ε
 
1

Q
l

 




54.5 (1 − ε)

Re0

 



(1 + Q

l

)2.75
 − 1




 + 0.87 




(1 + Q

l

)2 − 1







 . (48)

Resistance of the Grained Layer (general case). The layer resistance is influenced by the thermal processes
and the pressure dependence of the gas density. Therefore, to determine ∆p, one has to solve the complete system of
equations (32)–(38). Figures 4 and 5 show the calculated phase temperature and pressure profiles for various values of
Jf, Q, and h. As is seen, with increasing Q the pressure profile in the layer becomes essentially nonlinear. Note that
the calculations of Tf, Ts, and p made for various λf and λs

c−c (Eqs. (25), (26) and (28), (29), respectively), turned out
to be very close.

Figure 6 shows the dependences ∆p ⁄ patm obtained as a result of the numerical solution and by Eqs. (45) and
(48). The given curves make it possible to determine the value of the flow rate J

~
f at which ∆p in the heat-releasing

layer begins to coincide with the pressure differential value in the isothermal layer (curves 4). It should also be noted
that at Jf < J

~
f the calculations by (48) practically coincide with the numerical solution. As is seen from Fig. 6, at

Jf < J
~

f ∆p can be calculated by (48), and at Jf ≥ J
~

f by (45). To determine J
~

f, we have obtained a simple relation

Q
l

 (J~f) = 
Q (1 − ε) h

J
~

fcpT0

 = 0.024 




h

d





0.2

 . (49)

Note that the extreme character of the dependence ∆p(Jf) points to the existence of two Jf values corresponding to two
stationary regimes of filtration at ∆p > ∆pmin. In [3], it has been shown that the regime with a lower flow rate is un-
stable. The system either slowly goes from this state to the stable stationary regime or is heated with no limit.

CONCLUSIONS

1. On the basis of the analogy of convective heat and mass transfer, dependences for calculating the parallel
heat conductivity of phases (28), (29) have been obtained.

2. In the isothermal case, the account of the gas compressibility has made it possible to establish the range of

applicability of the known Ergan formula 




∆p
patm



E

 ≤ 0.1. At 




∆p
patm



E

 > 0.1 in the layer an essentially nonlinear pressure

profile (42) is formed. In this case, to calculate the layer resistance, a simple relation (45) has been obtained.
3. For the isobaric case where the pressure dependence of the gas density can be neglected, formula (48) tak-

ing into account the influence of the heat release on the layer resistance has been obtained.

Fig. 6. Pressure differential in the grained layer (general case): a) h ⁄ d = 100;
b) 1000; 1) Q = 5⋅103 W ⁄ m3;  2) 5⋅105;  3) 5⋅107; 4) calculation by (45);
dashed lines — calculation by (48), solid lines — numerical calculation. d =
10−4 m. Jf, kg ⁄ (m2⋅sec).
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4. Relation (49) has been obtained for calculating the gas flow rate J
~

f at which ∆p in the heat-releasing layer
begins to coincide with the differential pressure value in the isothermal case. At Jf < J

~
f ∆p can be calculated by (48),

and at Jf ≥ J
~

f — by (45).
The obtained relations (45), (48), (49) have a simple form and are convenient for use in engineering practice.

NOTATION

cv and cp, specific heat capacities of gas at constant volume and pressure, respectively, J ⁄ (kg⋅K); d, particle

diameter, m; Df
0, molecular diffusion coefficient of the gas, m2 ⁄ sec; D = patmd3ρf

 ⁄ (hµf
2); Fx, resistance force acting from

the side of the flow on particles in a unput volume of the layer, N ⁄ m3; h, height of the grained layer, m; Jf = ρfu, mass

flow of the gas, kg ⁄ (m2⋅sec); J
l

f  = Jf
2d3 ⁄ (ε2hµf

2); Pe0 = cpJfd ⁄ (6α0h(1 − ε)), Pe = cpJfd ⁄ (6αh(1 − ε)), Pef = cpJfh ⁄ (ελf),

Pes = cpJfh ⁄ ((1 − ε)λs), Peclet numbers; Pr, Prandtl number; p, pressure, Pa; p0, pressure at the inlet to the layer, Pa;

∆p = p0 − patm; p′ = p ⁄ patm; Q, heat release power, W ⁄ m3; Q
l

 = Q(1 − ε)h ⁄ (cpJfT0); Re = Jfd ⁄ µf, Re0 = Jfd ⁄ µf0, Resd

= usddρf0
 ⁄ µf0, Reynolds numbers; R, gas constant, m2 ⁄ (sec2⋅K); S, entropy, J ⁄ K; St0 = 

α0

cpJf
, Stanton number; T0, inlet

gas temperature, K; T0′, gas temperature at x → 0, K; Tf and Ts, temperature of gas and particles, K; u , gas filtration

speed, m ⁄ sec; usd = √γpatm
 ⁄ ρf0 , velocity of sound, m ⁄ sec; v, gas velocity in interparticle gaps, m ⁄ sec; x, coordinate, m;

α, interphase heat transfer coefficient, W ⁄ (m2⋅K); α0, heat transfer coefficient between the framework of particles on the

inflowing gas, W ⁄ (m2⋅K); α
__

1 = 633(1 − ε)εµf0h ⁄ (JfQ
l

d2); α
__

2 = 3ε(1 − ε)h ⁄ (2ψd); γ = cp
 ⁄ cv; ξ = x ⁄ h; ε, porosity; θf =

(Tf − T0) ⁄ T0; θs = (Ts − T0) ⁄ T0; κ, absorption coefficient of the dispersion medium, 1 ⁄ m; λf
0, molecular heat conduc-

tivity of the gas, W ⁄ (m⋅K); λf and λs, effective parallel heat conductivities of the gas and the framework of particles,
respectively, W ⁄ (m⋅K); λ

~
s, heat conductivity of the particle material, W ⁄ (m⋅K); λx

c−c, effective parallel heat conductiv-
ity of the dispersion layer, W ⁄ (m⋅K); λr, radiation heat capacity of the dispersion layer, W ⁄ (m⋅K); µf, dynamic gas
viscosity, kg ⁄ (m⋅sec); µf0, dynamic gas viscosity at T0, kg ⁄ (m⋅sec); ρf, gas density, kg ⁄ m3; ρf0, gas density at patm
and T0, kg ⁄ m3; ρf′ = ρf

 ⁄ ρf0; σ, scattering coefficient of the dispersion medium, 1 ⁄ m; ψ, minimum relative flow sec-
tion. Superscripts: 0, molecular; c-c, conductive-convective; subscripts: 0, inlet value; atm, atmospheric; E, calculation
by the Ergan formula at ρf0 and µf0; f, gas; r, radiation; s, particles; sd, sound; v, at constant volume.
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